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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 554 - ’ R

CIRCULAR MOTION OF BODIES OF REVOLUTION

By Carl Kaplan
SUMMARY

Thig note extends the method of N.,A.C.A. Report No.
516 to the case of an arbitrary body of revolution in '
steady motion at constant angle of attack and constant
path curvature, viz, circular path. Expressions are given
for the pressure, for the lateral and longitudinal compo-
nents of the centrifugal force of the apparent mass, and,
for the yawing moment. These expressions are then applied
to an ellipsold of revolution mainly for the purpose of
demonstrating the usefulness and simplicity of the vector
method.

INTRODUGCTION .

The circular motion for airship-like bodiesg has thus
far been calculated only for a prolate sllipsoid of revo-
lution (reference 1, p. 133 and reference 2)., In this
paper, however, the circular motion of elongated bodies of
revolution more nearly resembdbling airships will Dbe inves-
tigated. The results will give the effect of rotation on
the pressure distribution and thus yield some information
as to the stresses set up in an airship in circular flight.

THE BOUNDARY CONDITIONS

The body is referred to a rectangular Cartesian frame
0XYZ attached to 1t, and its axis of symmetry O0X moves
in a plane X'Y! fixed in space. The body is assumed to
rotate uniformly in a counterclockwise manner about 0!'2Z!
with angular velocity 2 and to possess an angle of yaw
B with respect to the origin 0. (See fig. 1.)

When considering elongated bodies, it is convenient
to introduce in any meridian plane XH confocal elliptic
coordinates -, Ae The coordinates =x, y, 2z, of any
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point P 1in space are then given in this new orthogonal
system of coordinates by the following expressions:

X = 2a\l

v 2a (\° - 1)% (r - ua)%'cés w (1)

1
% 2a (3®- 1)2 (1 - p?)% sin W
The coordinate surfaces of the so~called "sgpheroidal coor-
dinates" u, A, ®w are obtained by setting, in turn,
constant ' (hyperboloids of two sheets), A constant (pro-
late ellipsoids of revolution), ®w constant (half planes
through the axis of symmetry OX); these coordinate sur-~
faces fufnisgh by their intersectiong the three coordinate
lines:. | variable (ellipses), A variable (hyperbolas),
and o variable (circles with centers bon the O0X axis).
The coordinate lines give by means of their tangents, di-
rected positively in the direction in which the corre-
sponding coordinats is increasing, a rectangular Cartesian
frame whose origin 1s the point in which the three coordi-
nate surfaces (or coordinate lines) interssct. In order
that this frame be a right-handed one it is so arranged
that the posgitive direction of the tangents to the W, A,
w coordinate lines are analogous, respectively, to OX,
0Y, and 0Z. ‘

The position of the moving axes is defined by the po-
sition of the origin O, whose coordinates with respect
to the fixed axes are R cos Qt, R sin Qf, 0, and
by the direction cosines of one uet of axes with respect
to the other. ' The following direction cosine table gives
these valueg at any time t:

x v z

x! gin (Qt-=—8) cos (2% ~ B) 0
-y | -cds (QF - B) sin (Qt - B) 0
z! - o - 0 1

The ‘velocity of any point fixed w1th regard to the
moving axes is the resultant of two vectors, one of which
V is the same for all points of the system, beilng inde-
pendent of the coordinates =x, ¥y, z of the point and hav-
ing the components in the directions O'X!', Ot'Y!', 0'Z!

~
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equal to - R Q sin Q% R Qcos Q%, O, respectively,
and in the directions O0X, 0Y, 0Z egual to '

V. = -~ R Qcos B

X
Vy, = - R Qsin B (2)
v, = 0

This part of the motion is therefore a translation and is
made up of an axial motion with velocity = RQ cos §
and a transverse motion with velocity - R £ sin B. The
other part of the motion has components with respect to

the instantaneous position of the OXYZ frame, given by

'bx = - Qy
ty = Qx ' (3)
t, = 0.

and 1s therefore the vector product of a vector 1  vwhose
components with regard to the moving axes are 0, 0, 0,

and of the radius vector T from the origin O %o the

point P. The vector % 1lies in the XY plane and is
perpendicular to both I and T and has a magnitude egual
to Qr sin (Qr). It accordingly represents a motion due
to a rotation of the body with angular velocity Q about
the 0Z axis., Referred to a meridian plane making an an-
gle @ with the XY plane, the vector ¥ has a compo-—’
nent tx = = h cos ®w in the direction of the X axis,

a component ty = 0Qx cos @ in the direction of the "
axis, and a component Qx sin w perpendicular to the me-
ridian plane. This latter component plays no part in fix-
ing the boundary conditions for a body of revolution,

The translational velocity V of the body gives rise
to motions in the fluid represented by two velocity poten~
tials! @, due to the axlal velocity V,p and ¢z, due

to the transverse velocity Ve This type of motion has

already been discussed in detail in reference 3. Dlgre-
garding for the present the translational velocity ¥V,
the normal component of the velocity at any point P of
the meridian profile, whose element of length is ds, is
glven by

= dh dx 4
Yn Qcosm(h ds-l-de) (4)
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Turthermore, '1f @3 represents the velocity potential of

the flow due to the rotational part of the motion, the nor-
mal component of the velocity with respect to the Cartesian
(L, A, W) frame attached to the point P is

3¢, 09, ds) %5 dsy
on asp ds ds) ds

: o Qo4 ' :
or 5—1 dsy - —2 dsu = Qcosw (hdh + xdx) (5)
81 Osy _

where dsx, dSM are the linear elements corresponding to

the ), i coordinate lines, respectively.

1 1
Since x = 2aizu, h = 2a (\® - 1)% (1 - p3®)®

2 i . 2 2 %
- £ : £3% -
it follows that
20 . : e
(1-u2) a; A= (X -1) g——a—i . .
= (2a) Q cos @ (udp+Aar) _Qﬁ)'

% %

" |
(v = 1)° (1 - p®)

The velocity potential ¢, satisflies Laplace's egua—
tion and may, 1in gensral, be represented by the following
expansion!

-

ZZ 0" PyR(W) Q"(N) cos mo+E T DT PLM(M) QMM sin mo

where Enm(u)» Qnm(k) denote the agsociated ngendre func—

tionsg of degree n and order m of the firsgt and second
kind, respectively; and Gnm, Dnm glgnify certain con-

stants which are to be determined by the boundary condil-
tions. From the form of the boundary condition (6) it is
clear that :
-
Pz = Zl Op* Pyt (W) Qupr (A) cos w (7)
n=
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The functions P, (n), Q,* (M) are given in terms of the

corresponding Legendre polynomials by means of the follow-
ing expressions:

Pnl (u) = (1 - ua)% §E§Eﬂil

. (X) (8)
2 d

gt (V) = 07 - pE S

where P, (), Qy (A) satisfy legendre's differential

equation., With the use of equations (7) and (8) together
with Legendre's differential equation for P, (1) and

Qn (A), the boundary condition (&) takes the following
form: ’ '

o l[d(xu) dPy 4Qp

- n(nt+l) %E(annil—(za) Q (u+

® 1 ax )
by
n=1i 2 du

(9)
where it is assumed that A = A () describes the me-~

ridian curve of the body in elliptic coordinates.

For example, if the body is a prolate ellipsoid of

revolution its meridian curve is given simply by A = Ay,
a constant., Eguation (9) then becomes: -

> 4QnY\ dPy, >

% C l[h ( "= n{n+1) Q (Ao )J—‘“ (2a) Qu

n=1 an A= =\, n

and this expression must be valid for the entire Eéﬁgé of
M. ¥ow, of the complete set of P,'s only one of them,

namely, P, = % (3u® - 1),  has .its derivative proportional

to . Hence, n =2 1is the only term appsaring in the

boundary condition for the ellipsoid. . Therefore (reference
1, p. 133),

: - o -

%6 o . (2a) —_=g
z T : Ao+l .
(2027 - 1) 1og 2= - BAy + ——2—"\9—
A=l -1

and . . _ . e

1
_ _ = 2 _ % E N+l_ _ ;__
9s = Op(1-p2)Z (N2-1) (27\10g 3 - F1> cos



Thus, the complete velocity petentizl consists of a part ©, due to an axial velocity
- RQcos B, a part @, due to a transverse velocity - RQ sinJ B, and a part ¢z due be &

rotational motion of angular velocity € about O0Z. It follows then that

P = 9 + %3 + @3 . (10)
where
t%c_‘ ?. An d‘P dq‘ oy n ™ y
®y Spcidofh W) 4n AN M m qEay g gy - oI cee B 8s bhe bowndary condition

223 @ . ’

£ 51a ol L o[ d(aw) dPy & a_ }H
92 182t Pt Qpt(n) cos w with T, By FITRETORET) n{n+l) i (PR,) | =

- 2aR0 sin B + p, j ag the boundary condition (reference 3)

and ! . _

2 % ‘[mm apy dqy

1 1 L o oA 1[OANAKY S S

P o= ]‘Cr_1 Ppt (W) Qu- (A) cosw with 1 Cn L A% an nin+ 1) (PnQn)]

2a) o (LL-r A %&) as the boundary condition

From the similarity of the left-hand sides of the boundery conditions assopiated with Dy sy

it is clear that the treatment for o, applies equally well to @, Thus, a method has

been outlined for obtaining the velobity potential in a fluid due to a body of revolution in
cireular flight.

*ON 830K TROTUYCeL ‘v O0'V'H
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THE PRESSURE FORMULA

The next step is to calculate the forces actlng on
the moving body owing to the pressure of the fluid medium,
Since the body moves at a constant angle of attack and in
a circular path with constant angular velocity, the veloc~
ities ¥V, ¥ are independent of the time so that the motion
is a steady one. Therefore, the velocity potential )
does not contain the time t explicitly, i.e., g%-— 0,

and Lamb's formula (reference 1, p. 18) for the pressure
when the coordinate axes are in motion becomses: .

Ro_L g2 0P _ 9% QSQ L@ 30 _
p 2 1" "% (yax 2ay/ "9 %3z " Fax =%z oy ya~=> (1)

wnere Wg, wy,-wz are the component rotations reﬁe;red'to

the moving axes and ¢® = (urU)z + (v—V) + (w---W'_)2 vhere_
(wyvom) = (- $2 - 82, - 9% also ¢ = 91 +02+ 0.

.If the radius vector to the point (x,y,z) is denoted by

r, the fluid-velocity vector by = srad ¢, and the rota-—

tion by {1 then equation (11) may be writtem in vector
notation as:

!
W~

(q-q) (ﬁ r-grad qv}) : ©(12)

o k3

where the symbols ( ) and [ ] denote, respectively, the
scalar and vector products of two vectors. The scalar

triple product ((-[F-Zrad o]) =:(Eﬁ-§]5§?ad o) = (T-grad @)
waere t denotes that part of the velocity vector of any
point attached to the moving axes due to the rotation

alone. Equation (12), applied to the problem of this pa=
per, then becomes: . ’

1 1 ¥
5 == 3 (Vg + 7,2) - 5 (grad Q-grad @) - GV '+ ¥rgrad ¢)
or, omitting % (V 2 4 Vy?)' since it is & constant and'“
therefore has the same value over the surface of the body,
it follows that:
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In order to interpret equation (13) in spheroidal coordi-

nates, 1%t is necessary to obtain the presentation of the

various vectors-involved, in the Cartesian frame attached

. to the point (W, A, W). The table of direction cosines
for the -Cartesian frame attached to any polint is:

- Ty T %
b3 - K

| @ | ) e )

A (Ei:L é A (1J£~—> cos A (LJ£~%> ’sip w (14)

w _ .O _ , ~-sin W cos W B

With the use of thig table of direction cosines the vector

@, which for the present problem has the components
- 22 . Vg - 9P _ v el .With respect to the instantane-
ox oy vy Oz
ous position of the moving axes, has in the Cartesian frame
attached to any point W, A, w the following components: w
- [ J
Y, S, W | ,
@
a) = %;x - ; (15)
w aSw J
where . :
%
3% _ 1 (1-p® \" 3% 2% _‘_1_ __}._ 'QS?,
dsy,  2a \N°-u? M’ asn x - oA
3% _ 3 .99 -
. I T

28 (7 ~1)° (1-47)

and
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1
- _L-pBNE )
Vu = Ve A <>\.2"H'2 y p. (K SF cos W,

Ty =V

- a>
N -~ cos W, Vy = = V_ sin ®
x K N _ua h'a

Similarly, the vector {J, which in the moving O0XYZ frame
has the components (0, 0, ), has in the (s Ay Car-~
tesian frame the following presentation:

S\

2o1N\E .
Qu = - U (}e_u2> sin ®

Q) = m( ) sin ®{ (16)
Q, = 9] cos W ) '
axd the radius vector T, the following components:
I'\
2 12 )°
e = 2an (55
33 R
1
2 p
N=1
™, = 23)\.(-:"‘—?. (17)
)t
Ty = 0

The vector T has the components - Qy, Qx, 0 along

the axes of the moving frame and the following components
relative to the rectangular (W, N\ m) axes:

]

£, = - 2a (A (A‘————\ cos W

& L

2
2a 04 (1—H -) cos W (18)

ot
>
It

ot
I

- 2a OAp sin @ '
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THE LONGITUDINAL COLPOHEhT 0F: THE CENTRIFUGAL

FORCE OF THE APPARENT MASS

If .6 is .the inclination to.the .X _axis of the oup~
wvard—-drawn normal to the meridian curve at the polnt P,
then the lomgitudinal force isg

) ’ : 8o 2T - .
) . . Fq == f. f .p cos e hdwde
. By 0
waers dg 1is an element of length along a meridian curve;
8., B8y the values of . s -at the fore and aft ends of the

vody, and h the radius of the section through P perpen-
dicular to the axlis of symmetry OX.

Putting
-~ cos B =-%%
it follows that:
1 211 g
Fy = 5{{ ?dwdh

The area of the section of radius h is 4 = 7i® and the
average prossure at thig section is defined to De

1 2T
(R Y
P 217 { pdw
It then follows that
T, = J Ptda _ (19)

-t

C

talten over the generating contour of the body of revolu~
tion. .
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THE TRANSVERSE COHPONENT OF THE CENTRIFUGAL

FORCE OF THE APPARENT MASS

The component of the pressure p in the plane XY
is p cos ®w and the resultant transverse force is there~

fore ol .. Do =
Se zTr )

Fp ==~/ [/ pcos ® sin 6 hdw ds
s; 0 : -
or, since sin § = iz o -
ds -

Fp = - J ,/2 hp cos W dwdx
X, ©

The resultant of the components of the pressure p .in the
XY plane taken round a section of radius h perpendicu-
lar to the X axis, is given by
=277 '
P" =h f p cos w dw
5

acting normally to the meridian curve in the XY plane.
Then '
T2
Fp ==~ [ P'ax - - (20)
X1

THE YAWING MOMENT

The yawing moment about the axis of Z is given by

Sz
M, =/ P'lds
where 1 ig the perpendicular distance from the origin O
to the line of action of P" (or the normal at ths point
of the meridian curve in the XY plane at which PV isg
applied). The direction cosines at a point P (x,y), of
the outward-drawn normal to the meridian curve in the XV
plane are ' o :
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It follows, by means of elementary analytic geometry, that

xdx + ydy - dr
ds ds

and hence

M. = - 2/ P" 4 (2% + y3) =~ &/ P" ar? (21)
z 20 2C

taken over the upper half of the meridian profile in the

XY plane. It is interesting to note that for a sphero,
since r° = constant, My = O. The differential dr® may

bo lookcd upon as a measure of the deviation of the body
from a sphere.

Langley liemorial Acronautical Laboratory,
National Advisory Committee for Aeronautics,
Langleoy #Ficld, Va., December 23, 1935.

AFPPENDIX

SOLUTION FOR AW ELLIPSOID

The caseo of an ellipsoid of revolution moving in a
circular path haos already boen worked out, but the methods
uged are very cumbersome and involve unnecsssary algebrale
manipulations. It seems therefore instructive of the pres-
ont method, which makes liberal use of vector analysis, to
redovelop the solution for an elllpsoid,

Tho equation of tho meridian ellipse in Cartcsian co-
ordinates is:
x? y2

A T B

and in ellipsoidal coordinates, simply

A= N

where

= D x :' A1

-2 4
N = = 22 -3°=(22)°, As=(2a), and 2a (K -1)% = 3



The velocity potential ® is the sum of the following three components (reference 1,
pp. 132 and 133):

_ -Au 4 +1
¢‘1~i1 lre 3 \%-?\logh—lu
2e "% 16 167
V. = Aev -(7\3-1)%’ (1 LJ,B)% Loog ML _ A cos w (22)
25 1, lve  eRe’ el S >
2% 1. T 1e? '
- (AR-B® _ ; 1
Py = - (A°-B )Qs u&?\Bﬁl)% quuﬂjé(g-'}\log ;&%"3—ﬁ cos W
326 j0z Lre - 24 2y
2 e l-e e 1l-e J
where
u= -VcosP and v = -V sin B

The pressure formula (equation (13)) is expressed in vector form and is therefore
independent of the particular coordinate system used. The components of the wvectors

£vad ¢ V, and T are given by equations (16) to (18). Tor the eimple case of an ellip-
tical profile they are as follows:

$G6G °*ON €304 T®ITUYOG L *¥' D'V X

€T



u( )z (1+L)—vp,( )Q (1+¥) cos UJ-»A )E {1+(2u. —1)e3N} CoB W
o

grad p+V+t =4 0 23y I

- ‘l{.v(1+u)'f+ AQu (11—E2N)} sin w

4’
—"

e ua\‘l“ £ 1-0° "} (it

K- \16211-} ‘:7 coB w

T+t :..‘-<uu, l-e )Q ( )Q(v+2aeuﬂ) coB () o (24) F

I

- (v + ALQ) sip w
where -
1 l+e 1 i-a & 8. lte _ 3 _i e°
1o -1 = 1o - 1 3
Ze "% 1-e _ 2 e 16 - _ ce 1-e 1162 N
1 l+e 1 ! le _e-ge "3 g-e? lve o _ _e®
2e l-e 1l-e® 2 l-e 1-e2 2 1-e l-e?

TGS "Cf 210N TEOTUYDEL "V '0°V'H
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Calculation of the Longitudinal Force Component Fy

According to equation (19)

¥y, =/ PY dA =nw [ P! an® = - 2n8° fl Py du
c c . )
wiere : - - ' o
1 2T
t = = . w -
P 217 g - pd

The pressure p 1is easily calculated by forming the sca-
lar products of eguation (13) by means of the vector com-
ponents of equations (23) and (24), It is useful to ob~

serve that only the coefficients of cos2 W, sin® W neesd L
2T 2T :

be considered since [ cos® wdw = /S sin® wiw =7 -

. 2T - 0 2T o
while [ cos wdw = f sin wdw = 0, It then follows
o ' e :
after some algebraic reductions, that

7o o= & 2 ' - V2
Fi, = T4 B p QEv==mnlk 7 sin B
where ml='§-ﬁ A B® p. the mass of the flulid displaced by

the spheroid. ©Noting that M = kp, the transverse iner-
tia coefficient of the body: ' T

2L . |
Pyq = - = ke g 8in B (25)
Calculation of the Transverse Force Component Fp

According to eguation (20)

. 1
Fp =~/ P" dx = - A [ P" au ]
c -1 B
where SERES B ;
277 )
P" = h / p cos AW _ - L
0

Again, observing that only the coefficients of cosw in
the expression for the pressure P need be considered, it
follows that:
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2

Fp ="~ mA B p QLuwv=ml %— cos P

ST

Noting that L
body:

ka’ phe axlal inertia coefficient of the
v2
Py = m kg p— cos B (26)

Calculationlof,the-Yawing Moment M,

According to.equation (21) .
My = = 2/ BY a(=® + y?)
., . “c :

Now N “y 1
x=2a Ay and y = 2a(ls” ~ 1)2 (1 - p®)2
gsc that . : : 2' ;

My == (2a) f P u au

Again.only the coefficients of cos w in.the expr6351on

for the pressure P need be considered and 1t follows
that:

. - 2_4 - ¢
Uy = w&ggl_g_ wvp (1+T) { 1+16) iiiggl) 5 log %§§-+§§§§—- +§§e}

From the expressions for L, M it is easy to. see that

1 1
2(1+1) +'(H+1)

or e
Mgl + (3+1) = (T+1) (1)

It may be verified that

o4 2M-1 _ 2(e°-1) (l 10
3 M+l 2

ol Lo
At
oo

e- ~2e ) +. .

It follows that

My = - mu v (1 + L) (28X - 1) ‘




and

that

1.
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since
(1+1) (2= 1) =M-1 =%y - k,,
sz
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